	4	ď
Lecture 15:		
Orth-gonality		
Definition: Let	V be an inner product space. We say	$\vec{x}, \vec{y} \in V$
are orthogonal	(or perpendicular) if < X, Y> = 0.	
A subset S	cV is called orthogonal if any two	distind
vectors in S	are orthogonal.	
A unit vector	in V is a vector $\vec{x} \in V$ with	$\ \vec{x}\ = 1$.
A subset S c	cV is called orthonormal if S is	orthogonal
	s in S are unit vectors.	

-

e.g. Let H be the space of continuous complex-valued functions
on
$$[0, 2\pi]$$
. We have inner product defined by:
 $\langle f, g \rangle \stackrel{\text{def}}{=} \frac{1}{2\pi} \int_{0}^{2\pi} f(t) \overline{g(t)} dt$ for $f, g \in H$
For any $n \in \mathbb{Z}^{C \text{ integer}}$, let \mathcal{F}^{T}
 $f_{n}(t) = e^{int} \stackrel{\text{def}}{=} \cos nt + i \operatorname{Sinnt} \operatorname{for} - t \in [0, 2\pi]$
and consider $S = \{f_{n} : n \in \mathbb{Z}\} \subset H$ $\lim_{z \in \mathbb{Z}} \int_{0}^{2\pi} \cos(mn)t dt$
For any $m \neq n$, we have:
 $\operatorname{def} m = t \operatorname{I}_{2\pi} \int_{0}^{2\pi} e^{imt} e^{int} dt = \frac{1}{2\pi} \int_{0}^{2\pi} e^{i(m-n)t} dt = \frac{1}{2\pi} (\frac{1}{i(m-n)})e^{imm}$
 $e^{-int} = 0$

Also,
$$\langle f_n, f_n \rangle = \frac{1}{2\pi} \int_0^{2\pi} e^{int} e^{int} dt = \frac{1}{2\pi} \int_0^{2\pi} 1 dt = 1$$

 e^{-int}

a grown

onto

-

That are

2

i. S is orthonormal subset of H.

1

Definition: Let V be an inner product space. A subset of V
is an arthonormal basis for V if it is an ordered basis
which is orthonormal.
Proposition: Let V be an inner product space and
$$S = \{\vec{v}_1, ..., \vec{v}_k\}$$

be an orthogonal subset of V consisting of non-zero vectors.
Then: $\forall \vec{y} \in Span(S)$,
 $\vec{y} = \sum_{i=1}^{N} \left(\frac{\langle \vec{y}, \vec{v} i \rangle}{|| \vec{v}_i ||^2} \right) \vec{v}_i$

Proof: Write
$$\vec{y} = \sum_{i=1}^{k} a_i \vec{v}_i$$
 for some $a_i, a_{2,...}, a_k \in F$.
Take inner product with \vec{v}_j on both sides gives:
 $\langle \vec{y}, \vec{v}_j \rangle = \sum_{i=1}^{k} a_i \langle \vec{v}_i, \vec{v}_j \rangle = a_j ||\vec{v}_j||^2$
(Corollary I: If, in addition to above, S is orthonormal,
then $\forall \vec{y} \in Span(S)$, $\vec{y} = \sum_{i=1}^{k} \langle \vec{y}, \vec{v}_i \rangle \vec{v}_i$

-

a.

By previous proposition,
$$p$$

 $a_i = \langle \vec{v}, \vec{v}; \rangle / ||\vec{v}; ||^2 = 0$ for $i=1,2,...,k$.

in.

$$\frac{Prop:}{Let V be an inner product space and Sn=\{\overline{w}_1,...,\overline{w}_n\}}{be a linearly independent subset of V. Define:Sn' = {\overline{v}_1, \overline{v}_{2,...,}, \overline{v}_n} where \overline{v}_1 = \overline{w}_1 andfor $R=2,...,n$,
 $\overline{v}_R = \overline{w}_R - \sum_{j=1}^{K-1} ((\overline{w}_R, \overline{v}_j)) \overline{v}_j$
Then: Sn' is orthogonal and Span(Sn') = span(Sn)
 $\overline{w}_2 = \overline{w}_2 - \overline{w}_1 - \overline{w}_1$$$

$$\frac{Pro \cdot f:}{For n=1}, \text{ we simply have } S_1' = S_1 \dots \text{ The statement is obviously true}.$$
Suppose the statement is true for $n = m-1$. Induction That's, $S_{m-1}' = \{\vec{v}_1, \dots, \vec{v}_{m-1}\}$ is orthogonal and hypothesic Span $(S_{m-1}') = Span (S_{m-1}')$
Now, consider a lin. independent subset $S_m = \{\vec{w}_1, \vec{w}_2, \dots, \vec{w}_{m-1}, \vec{w}_m\}$
Then: for $\vec{v}_m \stackrel{\text{def}}{=} \vec{w}_m - \sum_{j=1}^{m-1} \frac{\langle \vec{w}_m, \vec{v}_j \rangle}{\|\vec{v}_j\|^2} \vec{v}_j$, we have:
 $\langle \vec{v}_m, \vec{v}_i \rangle = \langle \vec{w}_m, \vec{v}_i \rangle - \langle \vec{v}_m, \vec{v}_j \rangle$

... Sm is orthogonal.
Also,
$$\vec{U}_m \neq \vec{O}$$
 since otherwise, $\vec{W}_m \in \text{Span}(S_{m-1})$
 $Span(\{\vec{W}_1, \vec{W}_2, -, \vec{W}_m, M\})$
cuntradicting the condition that Sm is linearly independent.
Hence, $Sm' = \{\vec{U}_1, \vec{U}_2, ..., \vec{U}_{m-1}, \vec{U}_m\}$ is orthogonal subset
consisting of non-zero vectors. ... S'_m is linearly independent.
Also, $Span(S'_m) \subset Span(S_m) \implies Span(S'_m) = Span(S_m)$
 \vec{T}
 $dim = M$

Party of

The above construction of an orthogonal basis is called Gram-Schmidt process.

2