Lecture 15:
Orthogonality
Definition: Let V be an inner product space. We say $\vec{x}, \vec{y} \in V$ are orthogonal (or perpendicular) if $\langle\vec{x}, \vec{y}\rangle=0$.
A subset $S \subset V$ is called orthogonal if any two distinct vectors in S are orthogonal.
A unit vector in V is a vector $\vec{x} \in V$ with $\|\vec{x}\|=1$.
A subset $S \subset V$ is called orthonormal if S is orthogonal and all vectors in S are unit vectors.
e.9. Let H be the space of continuous complex-valued functions on $[0,2 \pi]$. We have inner product defined by:

$$
\langle f, g\rangle \stackrel{\text { def }}{=} \frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) \overline{g(t)} d t \quad \text { for } f, g \in H
$$

For any $n \in \mathbb{Z}^{\text {integer }}$, let $\sqrt{-1}$

$$
f_{n}(t)=e^{i n t}: \operatorname{def} \cos n t+i \sin n t \quad \text { for } t \in[0,2 \pi]
$$

and consider $S=\left\{f_{n}: n \in \mathbb{Z}\right\} \subset H \quad \frac{1}{2 \pi} \int_{0}^{2 \pi} \cos (m-n) t d t$ For any $m \neq n$, we have:

$$
\pi \int_{0} \cos / 1+i \frac{1}{2 \pi} \int_{0}^{2 \pi} \sin (m-n) t d t
$$

$$
\left\langle f_{m}, f_{n}\right\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i m t} \overline{e^{i n t}} d t=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i(m-n) t} d t=\left.\frac{1}{2 \pi}\left(\frac{1}{i(m-n)}\right) e^{i(m-n)}\right|_{0}
$$

Also, $\left\langle f_{n}, f_{n}\right\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i n t} \overline{e_{1}^{i n t}} d t=\frac{1}{2 \pi} \int_{0}^{2 \pi} 1 d t=1$
$\therefore S$ is orthonormal subset of H.

Definition: Let V be an inner product space. A subset of V is an orthonormal basis for V if it is an ordered basis which is orthonormal.
Proposition: Let V be an inner product space and $S=\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ be an orthogonal subset of V consisting of non-zero vectors. Then: $\forall \vec{y} \in \operatorname{Span}(S)$,

$$
\vec{y}=\sum_{i=1}^{k}\left(\frac{\left\langle\vec{y}^{\prime}, \vec{v}_{i}\right\rangle}{\left\|\vec{v}_{i}\right\|^{2}}\right) \stackrel{\rightharpoonup}{v}_{i}
$$

Proof: Write $\vec{y}=\sum_{i=1}^{K} a_{i} \vec{v}_{i}$ for some $a_{1}, a_{2}, \ldots, a_{k} \in F$.
Take inner product with \vec{v}_{j} on both sides gives:

$$
\left\langle\vec{y}_{y}, \vec{v}_{j}\right\rangle=\sum_{i=1}^{k} a_{i}\left\langle\vec{v}_{i}, \vec{v}_{j}\right\rangle=a_{j}\left\|\vec{v}_{j}\right\|^{2}
$$

Corollary 1: If, in addition to above, S is orthonormal, then $\forall \vec{y} \in \operatorname{Span}(s), \quad \vec{y}=\sum_{i=1}^{k}\left\langle\vec{y}^{\prime}, \vec{v}_{i}\right\rangle \vec{v}_{i}$

Corollary 2: Let S be an orthogonal subset of an inner product space V consisting of non-zero vectors. Then, S is linearly independent.
Proof: If $\sum_{i=1}^{k} a_{i} \vec{v}_{i}=\vec{v}^{\operatorname{san}\left(\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}\right)}$ for some $\vec{v}_{1}, \ldots, \vec{v}_{k} \in S$ and $a_{1}, a_{2}, \ldots, a_{t} \in F$,

By previous proposition,

$$
a_{i}=\left\langle\overrightarrow{0}, \vec{v}_{i}\right\rangle /\left\|\vec{v}_{i}\right\|^{2}=0 \quad \text { for } \quad i=1,2, \ldots, k \text {. }
$$

Prop: Let V be an inner product space and $S_{n}=\left\{\vec{\omega}_{1}, \ldots, \vec{\omega}_{n}\right\}$ be a linearly independent subset of V. Define:

$$
S_{n}^{\prime}=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\} \text { where } \vec{v}_{1}=\vec{w}_{1} \text { and }
$$

for $k=2, \ldots, n$,

$$
\vec{v}_{k}^{\prime} \text { def } \vec{w}_{k}-\sum_{j=1}^{k-1}\left(\frac{\left\langle\vec{w}_{k}, \vec{v}_{j}\right\rangle}{\left\|\vec{v}_{j}\right\|^{2}}\right) \vec{v}_{j}
$$

Then: S_{n}^{\prime} is orthogonal and $S_{p a n}\left(S_{n}{ }^{\prime}\right)=\operatorname{span}\left(S_{n}\right)$,

$$
\begin{aligned}
& \pi \begin{array}{l}
\vec{w}_{2} \\
\vec{v}_{2}=\vec{w}_{2}-c_{1} \vec{v}_{1} \text { where } c_{1}=\frac{\left.\vec{w}_{2}, \vec{v}_{1}\right\rangle}{\left\|\vec{v}_{1}\right\|^{2}} \\
\vec{w}_{1}=\vec{v}_{1}
\end{array}
\end{aligned}
$$

Proof: We prove by induction on n.
For $n=1$, we simply have $S_{1}{ }^{\prime}=S_{1} . \therefore$ The statement is obviously true.
Suppose the statement is true for $n=m-1$.
That's, $S_{m-1}^{\prime}=\left\{\vec{v}_{1}, \ldots, \vec{v}_{m-1}\right\}$ is orthogonal

$$
S_{p a n}\left(S_{m-1}^{\prime}\right)=\operatorname{Span}\left(S_{m-1}\right)
$$

Now, consider a lin. independent subset $S_{m}=\left\{\vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{m-1}, \vec{w}_{m}\right\}$
Then: for $\vec{v}_{m} \stackrel{\text { def }}{=} \vec{\omega}_{m}-\sum_{j=1}^{m-1} \frac{\left\langle\vec{w}_{m}, \vec{v}_{j}\right\rangle}{\left\|\vec{v}_{j}\right\|^{2}} \vec{v}_{j}$, we have:

$$
\begin{aligned}
\left\langle\vec{v}_{m}, \vec{v}_{i}\right\rangle & =\left\langle\vec{w}_{m}, \vec{v}_{i}\right\rangle-\sum_{j=1}^{m-1} \frac{\left\langle\vec{w}_{m}, \vec{v}_{j}\right\rangle}{\left\|\vec{v}_{j}\right\|^{2}}\left\langle\vec{v}_{j}, \vec{v}_{i}\right\rangle \text { for } i=1, \ldots, m-1 \\
& =\left\langle\vec{w}_{m}, \vec{v}_{i}\right\rangle-\frac{\vec{w}_{m}, \vec{v}_{j} \|^{2}}{\left.\| \vec{v}_{i}, \vec{v}_{i}\right\rangle}=0
\end{aligned}
$$

$\therefore S_{m}^{\prime}$ is orthogonal.
Also, $\vec{v}_{m} \neq \overrightarrow{0}$ since otherwise, $\vec{w}_{m} \in \operatorname{Span}\left(S_{m-1}^{\prime}\right)$

$$
\begin{gathered}
\operatorname{Span}\left(S_{m-1}\right) \\
\operatorname{Span}\left(\left\{\stackrel{\rightharpoonup}{\omega}_{1}, \vec{\omega}_{2}, \ldots, \vec{\omega}_{m-1}\right\}\right)
\end{gathered}
$$

contradicting the condition that S_{m} is linearly independent,
Hence, $S_{m}^{\prime}=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m-1}, \vec{v}_{m}\right\}$ is orthogonal subset consisting of non-zewo vectors. $\therefore S_{m}^{\prime}$ is linearly independent.
Also, $S_{p a n}\left(S_{m}^{\prime}\right) \subset S_{p a n}\left(S_{m}\right) \Rightarrow S_{p a n}\left(S_{m}^{\prime}\right)=S_{p a n}\left(S_{m}\right)$

$$
\operatorname{dim}=m
$$

The above construction of an orthogonal basis is called Gram-Schmidt process.

